
SILIGURI INSTITUTE OF

TECHNOLOGY

CS 892

Supermarket Billing System

BY

CSE_PROJ_2021_03

Name of Students Roll No.
1. Rinki Kundu 11900117032

2. Suswagata Chakraborty 11900117012

3. Shweta Das 11900117018

4. Tanushree Pandit 11900117010

Under the Guidance

of

Prof. Debajyoti Guha

Submitted to the Department of Computer Science & Engineering in partial fulfillment of
the requirements for the award of the degree Bachelor of Technology in Computer Science &
Engineering.

Year of Submission: 2021

Siliguri Institute of Technology
P.O. SUKNA, SILIGURI, DIST. DARJEELING, PIN: 734009

Tel: (0353)2778002/04, Fax: (0353) 2778003

Page | 1

DECLARATION

This is to certify that Report entitled “Supermarket Billing System” which is submitted by
me in partial fulfillment of the requirement for the award of degree B.Tech. in Computer
Science Engineering at Siliguri Institute of Technology under Maulana Abul Kalam
Azad University of Technology, West Bengal. We took the help of other materials in our
dissertation which have been properly acknowledged. This report has not been submitted
to any other Institute for the award of any other degree.

Date: 05.07.21

SN Name of the Student Roll No Signature

1 Rinki Kundu 11900117032

2 Suswagata Chakraborty 11900117012

3 Shweta Das 11900117018

4 Tanushree Pandit 11900117010

Page | 2

CERTIFICATE

This is to certify that the project report entitled “Supermarket Billing System”
submitted to Department of Computer Science & Engineering of Siliguri Institute
of Technology in partial fulfilment of the requirement for the award of the degree
of Bachelor of Technology in Computer Science & Engineering during the
academic year 2019-20, is a bonafide record of the project work carried out by them
under my guidance and supervision.

Project Group Number : 03

SN Name of the students Registration No Roll No

1. Rinki Kundu 171190110064 11900117032

2. Suswagata Chakraborty 171190110084 11900117012

3. Shweta Das 171190110078 11900117018

4. Tanushree Pandit 171190110086 11900117010

Page | 3

Acknowledgement

Success of any project depends largely on the encouragement and guidelines of many
others. We take this sincere opportunity to express our gratitude to the people who have
been instrumental in the successful completion of this project work.

We would like to show our greatest appreciation to our project guide Prof. Debajyoti
Guha. We always feel motivated and encouraged every time by his valuable advice and
constant inspiration; without his encouragement and guidance this project would not
have materialized. We would give special thanks to our HOD Mr. Anupam Mukherjee
and all other teachers for their assistance during the various stages of the project. We
are also very thankful to our respected director Dr. Pradosh Kumar Adhvaryyu.

Words are inadequate in offering our thanks to the other classmates and project
assistants of our college for their encouragement and cooperation in carrying out this
project work. The guidance and support received from all the members and who are
contributing to this project, was vital for the success of this project.

Signature of all the group members with date

Page | 4

Table of Contents

1. Introduction and objectives

1.1 Introduction…………………………………………………………………………………….8

1.2 Objectives………………………………………………………………………………………..9

2. System ANALYSIS………………………………………………………9

2.1 Identification of Need………………………………………………………………...……. 9

2.2 Preliminary Investigation …………………………………………………………………. 9

2.3 Feasibility study……………………………………………………………………………… 10

2.3.1 Technical Feasibility……………………………………………………………………10

2.3.2 Economic Feasibility………………………………………..………………………….10

2.3.3 Legal Feasibility…………………………………………..………………………………10

2.3.4 Operational Feasibility…………………………………………………………………11

2.3.5 Scheduling Feasibility……………………………………………….…………………11

2.4 Project planning……………………………………………………………………………….. 11

2.5 Project Scheduling………………………………………………………………………………12

2.6 Software Requirement Specification………………………………….………….…..12

2.6.1 Introduction………………………………………………………………………………..12

Page | 5

2.6.1.1 Purpose……………………………………………………………………………………….

12

2.6.1.2 Project Scope……………………………………………………………………………….12

2.6.1.3 Document Conventions……………………………………………………………....13

2.6.2 Overall Description………………………………………………………………………13

2.6.2.1 Product Features……………………………………………………………………….. 13

2.6.2.2 Assumptions and Dependencies…………………………………………………. 13

2.6.2.3 Design and Implementation Constraints……………………………………..13

2.6.3 Functional Requirements…………………………………………………………….13

2.6.3.1 Software Requirements……………………………………………………………...13

2.6.3.2 Language used…………………………………………………………………………...13

2.6.4 Non-Functional Requirements…………………………………………………….14

2.6.4.1 Usability………………………………………………………………………………………
14

2.6.4.2 Performance……………………………………………………………………………….14

2.6.4.3 Availability………………………………………………………………………………….14

2.7 Software Engineering Paradigm Applied……………………………………………14

3. System Design…………………………………………………………………………………...14

3.1 Definition…………………………………………………………………………………………..

15

3.2 Input………………………………………………………………………………………………
…..15

3.3 Output

……………………………………………………………………………………………….15

4. Coding……………………………………………..………………………………………………
….18

Page | 6

4.1 Code

Efficiency………………………………………………………………………………..…..18

4.2 Coding

Standards………………………………………………………………………………….18

4.3 Codes…………………………………………………………………………………………...…
……19

5. Testing……………………………………………………………………………………………
….….22

5.1 Testing

Objectives………………………………………………………………………………...……22

5.2 Testing

Principles………………………….……………………………………………………………22

5.3 Software Testing

Techniques……………………….…………………………………………….22

5.3.1 White Box

Testing……………………………………………………………………….……….22

5.3.2 Black Box

Testing……………..………………………………………………………….………23

5.4 Software Testing Strategies Used…………………………………………………………….….25

5.4.1 Unit

Testing…………………………………………………………………………………………
..25

5.4.2 Integration

testing……………………………………………………………………………...…26

5.4.3 System

Testing……………………………………………………………………………………...26

5.4.4 Acceptance

Testing……………………………………………………………………………..…26

5.5 Testing for this

Project………………………………………………………………….………...……26

6. Cost Estimation of the

Project……………………………………………………………………….26

Page | 7

7. Reports…………………………………..…………………………………………………………
………....28

8. Charts………………………………………………………………………………………………
……...……28

8.1 PERT

Chart………………………………………………………………………………………………
….…28

8.1.1 Steps to Implement a PERT

Chart………………………………………………………..….28

8.2 GANTT

Chart…………………………………………………………………………………………...…
….28

9. Limitations and

Conclusion………………………………..……………………………….………….29

9.1 Limitations in the Current

Version……………………………………………………………………29

9.2 Conclusion…………………………………………………………………………………………
………...….29

10. References…………………………………………………………………………………………
………...….30

Abstract

Billing systems are the most widely recommended legal technologies, which the corporate might and

merchants urge to utilise. Over the years Billing systems have made quite a reputation in any or most

industrial practices, the need for precise information is increasing and when it comes to satisfying

client’s growing demand, regarding their transactions, it does not discriminate.

Page | 8

Why use a billing system?

➢ Administrative control using a billing system as it keeps the invoice process optimum and

well managed.

➢ Creating transparency between the organisation and the customer.

➢ Operation like re-funds, discounter, renewal, one-off transaction and free trials are much

more easier.

1.Introduction & Objectives

1.1 Introduction:

This software project is a traditional supermarket billing system with some added functionality. This
system is built for fast data processing and bill generation for supermarket customers. The billing system
consists of a Mysql database, java Jframe and the effective front end designed in Netbeans IDE. The
billing database is a vast collection of product name, price and other product specific data. A product
when billed is searched from the database and its price is added to the bill based upon the product
quantity. The supermarket billing system is built to help supermarkets calculate and display bills and
serve the customer in a faster and efficient manner. This software project consists of an effective and easy
Gui to help the employee in easy bill calculation and providing an efficient customer service.

1.2 Objectives:

We aim to create and develop a system that is capable and reliable in the whole transaction flow

such as tracking, retrieving and storing data in an appropriate way. In particular it aims to:

● Provide a database that will store information.

● Develop a system that will lessen process delay in terms of receipts and bills. Provide summary

reports daily and monthly sales including a reservation report system that can accommodate

reservation transactions from customers.

2. System Analysis

Page | 9

2.1 Identification of Need

Identification of Need is a process of determining what and how an end-user would want a
product to perform. The needs of an end-user are often non-technical, and they reflect the user’s
perception of the product, not the actual design specifications, although frequently they are closely
related. Identification of needs has two major goals:

● To keep the product focused on the needs of an end user.
● To identify not just the explicit needs of the customer, but also the latent needs.

With our project, we have tried to produce an architecture which keeps both the above points into
consideration. From the end user point of view, we have tried to keep the project simple and intuitive
enough so that it can easily be handled.

Keeping in mind the latent needs, we have also made the system capable of upscaling.

In addition, as mentioned in the future scope, the system can be further made better by embedding
new techniques like steganography using audio and video files.

2.2 Preliminary Investigation

One of the major purposes of the preliminary investigation is the evaluation of the project request. It
is the process of collecting information which helps the evaluator to identify the merits of the project and
make a judgement on the feasibility of the proposed project.

As the core of any system analysis is a detailed understanding of all-important facts of the topic
under investigation. Few of the key questions to be answered are as listed below:

● What is being done?
● How is it being done?
● Who are the end users?
● Is there any problem with the existing system?
● How well does the new system address the current problems?
● Does the new system pose a risk? If yes, can it be overcome?

To answer these questions, first of all, we did an analysis of the topic of interest and then worked on
identifying the lacunas in the currently available implementation and the needs or requirements that could
be added to improvise the current system and at the same time providing a better result or outcome to the
end user.

Here, the biggest challenge we faced was to identify how to generalize our system to address a
broader category of users in the best possible manner rather than we got multiple use cases where this
system could be validated, as is mentioned already in the introduction and abstract. Keeping in mind the
questions mentioned above, we sat together for a session where we discussed what could be the
requirements that the new system proposed should address and how the end user would like the product
to be and at the end of the session we came up with a list of features that could be incorporated into the
system.

Page | 10

2.3 Feasibility Study

A feasibility analysis evaluates the project’s potential for success; therefore, perceived objectivity is
an essential factor in the credibility of the study for potential investors and lending institutions. There are
five types of feasibility study—separate areas that a feasibility study examines, described below.

2.3.1 Technical Feasibility

This assessment focuses on the technical resources available to the organization. It helps
organizations determine whether the technical resources meet capacity and whether the technical team is
capable of converting the ideas into working systems. Technical feasibility also involves the evaluation of
the hardware, software, and other technical requirements of the proposed system. As an exaggerated
example, an organization wouldn’t want to try to put Star Trek’s transporters in their building—currently,
this project is not technically feasible.

2.3.2 Economic Feasibility

This assessment typically involves a cost/ benefits analysis of the project, helping organizations
determine the viability, cost, and benefits associated with a project before financial resources are
allocated. It also serves as an independent project assessment and enhances project credibility—helping
decision-makers determine the positive economic benefits to the organization that the proposed project
will provide.

2.3.2 Legal Feasibility

This assessment investigates whether any aspect of the proposed project conflicts with legal
requirements like zoning laws, data protection acts or social media laws. Let’s say an organization wants
to construct a new office building in a specific location. A feasibility study might reveal the
organization’s ideal location isn’t zoned for that type of business. That organization has just saved
considerable time and effort by learning that their project was not feasible right from the beginning.

2.3.4 Operational Feasibility

This assessment involves undertaking a study to analyse and determine whether—and how well—the
organization’s needs can be met by completing the project. Operational feasibility studies also examine
how a project plan satisfies the requirements identified in the requirements analysis phase of system
development.

2.3.5 Scheduling Feasibility

This assessment is the most important for project success; after all, a project will fail if not
completed on time. In scheduling feasibility, an organization estimates how much time the project will
take to complete.

When these areas have all been examined, the feasibility analysis helps identify any constraints the
proposed project may face, including:

Internal Project Constraints: Technical, Technology, Budget, Resource, etc.

Page | 11

Internal Corporate Constraints: Financial, Marketing, Export, etc.

External Constraints: Logistics, Environment, Laws, and Regulations, etc.

2.4 Project planning

Project planning is the most important management activity. The basic goal of planning is to look into the future,
identify the activities that need to be done to complete the project successfully and plan the scheduling and resources.
Planning of the project starts long before its development has started. Without a proper plan, no real monitoring or
controlling of the project. Lack of proper planning leads to failure of the project later on. The major issues project planning
addresses are:

● Process planning
● Effort estimation
● Schedule and resource estimation
● Quality plans
● Risk Management

In our project, we tried to ensure that all the above points are taken care of. In order to achieve process planning,
we had devised workflow diagrams and system architecture diagrams to understand the interfacing and data flow between
various components/modules and specified the tasks needed to be carried out in each stage. Effort and Cost Estimation was
done by taking into account almost all the possible requirements and the cost was calculated accordingly. The schedule of
the project was devised and all the resources needed to develop the project were determined. The potential risks that may
evolve during the development of the project were noted down and steps were devised to tackle the problems that may arise
as the project progresses. Plans have been made to constantly monitor the working of the project and are flexible enough
for making changes later on if required. In addition, to cater to the requirements of the project, we kept the provision of
syncing up with the initial plan and making minor adjustments to it, if found necessary for the project.

2.5 Project Scheduling

Software project scheduling is an activity that distributes efforts across the planned project duration by allocating
the effort to specific software engineering tasks. In order to prepare the schedule, we first identified all the major tasks
needed to complete the project and these tasks were broken down into simpler and smaller sub-tasks. All the tasks were
allotted the necessary resources and the time estimates were established to complete the tasks.

PERT and GANTT charts were developed to graphically represent the scheduling of different tasks to be performed. The
different schedules devised by us are:

Schedule 1: Determine all the entities of the project and interfacing between them. Also determine the software
requirements for the system.

Schedule 2: Develop the software part to be embedded in the system.

Schedule 3: Test the software for proper functionally as independent entities.

Schedule 4: Integration of software via the necessary drivers.

Page | 12

Schedule 5: Testing of the integrated system.

Schedule 6: Monitoring the project for maintenance and any further changes if required, keeping the scope of improvement
always open.

2.6 Software Requirements Specifications

2.6.1 Introduction

This software project is a traditional supermarket billing system with some added functionality. This
system is built for fast data processing and bill generation for supermarket customers. The billing system
consists of an sql database and effective front end designed in Asp.net. The billing database is a vast
collection of product name, price and other product specific data. A product when billed is searched from
the database and its price is added to the bill based upon the product quantity. The system also contains
discounts on various products so that the product is offered at discounted price while billing. The
supermarket billing system is built to help supermarkets calculate and display bills and serve the
customer in a faster and efficient manner. This software project consists of an effective and easy Gui to
help the employee in easy bill calculation and providing an efficient customer service.

2.6.1.1 Purpose

This billing system focuses on the development of an information system that will automate
manual transactions in the supermarkets.

2.6.1.2 Project Scope

The proposed automated system should generate reports of daily and monthly sales including reservation
transactions of products. The user by using this software can add information about new buyers, can
update buyers details, can show all details about buyers, can also delete details of a buyer if required.
The system can add new products, show all details about products, and can also delete product details. It
will generate receipts on every transaction inputted to the system. The software will display a view of
calculations of every transaction. For security and privacy of the management, the billing system
complies login users with username and password.

2.6.2 Overall Description

2.6.2.1 Product Features

● User-friendly UI
● It works with different algorithms to keep safe from intruders
● The software provides the option of scalability with minimal changes in the code

2.6.2.2 Assumptions and Dependencies

Page | 13

During the design, few scenarios were encountered which required further implementation of a few
things which did not fit into the time constraints as described later. Below are a few assumptions that
have been taken in.

● The software works fine with the basic skeletal features but one needs to manually copy the text
areas to make the system work.

● The image after encoding should be in its raw form, if compressed or resized can lose the
information inside it.

2.6.2.3 Design and Implementation Constraints

When we work on a certain project it is not always necessary that we have all the things at our disposal
for implementing the same. Below are some of the constraints that we got restricted with during the
development of the project.

● Time: working for a project with a deadline time is always a constraint as we have to deliver the
output within a stipulated time and hence, we faced some limitation to some extent

● Research: When developing algorithms, one needs ample amount of research on the topic which
was limited due to the first constraint.

2.6.3 Functional Requirements

2.6.3.1 Software Requirements

● We are using Netbeans IDE to develop the project.
● Mysql for the database and Java Jframe.

2.6.3.2 Language Used

● Java

2.6.4 Non-Functional Requirements

2.6.4.1 Usability

The system shall be easy to use.
The output produced by the system should be easily understood by the user.

2.6.4.2 Performance

● User friendliness: It was ensured by the end user should be having a very limited
amount of time to operate

Page | 14

● Robustness: This is one of the most important things that one tries to make a system
capable of, i.e. to be robust and to cater the requirements of all kinds of scenarios. We
tried to make the software as robust as possible but some things can be done which
were restricted due to the factors mentioned earlier.

● Error handling: Response to user errors and undesired situations have been taken care
of to ensure that the system operates without halting.

2.6.4.3 Availability

● Other than the point that we depend on an uninterrupted local server running.

3. System design

3.1 Definition

The most creative and challenging phase of development is System Design. It provides the understanding
and procedural details necessary for the logical and physical stages of development. In designing a new
system, the system analyst must have a clear understanding of the objectives, which the design aims to
fulfil.

The first step is to determine how the output is to be produced and in what format. Second, input data and
the master files have to be designed to make the requirements of the proposed output. The operational
phases are handled through programme construction and testing.

3.1.1. Input

● Users can input new buyers details, update buyers details.
● Quantity of item purchased by buyer.

3.1.2. Output
● Calculate buyer’s bill
● Store and organise the customer’s reservation.
● Organise and monitor the sales report.

New Buyer:
The New Buyer page takes details of the buyer. The record is stored in the database and can be viewed
with the help of Buyer Detail option.

Page | 15

Fig: New Buyer

Update Buyer:
Similarly, if the cashier wants to update information regarding any particular customer then it can be done
with the help of the update buyer option by typing in the contact number and then making the necessary
changes.

Fig: Update Buyer

Delete Buyer:
The customer information can easily be deleted with the help of the delete buyer option.

Page | 16

Fig: Delete Buyer

4. CODING
Coding is the use of computer programming languages to give computers and machines instructions on
what actions to perform. Coding is the way humans communicate with machines, and it allows us to
create software like programs, operating systems, and mobile apps. Computer programming is the
process of designing and building an executable computer program to accomplish a specific computing
result. Programming involves tasks such as: analysis, generating algorithms, profiling algorithms'
accuracy and resource consumption, and the implementation of algorithms in a chosen programming
language (commonly referred to as coding). The source code of a program is written in one or more
languages that are intelligible to programmers, rather than machine code, which is directly executed by
the central processing unit. The purpose of programming is to find a sequence of instructions that will
automate the performance of a task on a computer, often for solving a given problem.

4.1 CODE EFFICIENCY

Code efficiency plays a significant role in applications in a high-execution-speed environment where
performance and scalability are paramount. One of the recommended best practices in coding is to ensure

Page | 17

good code efficiency. Well-developed programming codes should be able to handle complex algorithms.

Recommendations for code efficiency include:

● to make use of reusable components whenever possible.
● to make use of error and exception handling at all layers of software, such as UI, logic and data

flow.
● to make programming codes that ensure data integrity and consistency.
● to develop programming code that’s compliant with the design logic and flow.
● to make use of coding practices applicable to the related software.
● to optimize the use of data access and data management practices.
● to use the best keywords, data types, variables and other available programming concepts to

implement the related algorithm.

1.2 Coding Standards

They are a series of procedures that can be defined for a particular programming language specifying a
programming style, the methods, & different procedures. These procedures can be for various aspects of
the program written in that language. They can be considered as essential attributes of software
development. A coding standard makes sure that all the developers working on the project are following
certain specified guidelines. The code can be easily understood and proper consistency is maintained.
Consistency has a positive impact on the quality of the program and one should maintain it while coding.
Also, it should be taken care that the guidelines are homogeneously followed across different levels of the
system and they do not contradict each other. The finished program code should look like that it has been
written by a single developer, in a single session.

Coding standards are important in Software Development because:

If the coding standards are not defined, the developers could use their own methods which might lead to
certain negative effects such as:

1. Security Concerns:
Software becomes vulnerable to attacks if it is inconsistent, contains bugs and errors in logic. Most of the
aforementioned problems arise due to the faulty programming code that might have resulted from poor
coding practices.

2.Performance Issues:
Poor coding has an adverse effect on the performance of the site. The performance issues comprise a
multitude of things like when the user is interacting with the site, server response issues, reusability &
flow of the code, etc.

1.3 Codes

Page | 18

The code used in our project is given below:

login.java:

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
int a;
a = JOptionPane.showConfirmDialog(null,"Do you really want to Close the Application?","Select",

JOptionPane.YES_NO_OPTION);
if(a==0){

System.exit(0);
}

}

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
if(jTextField1.getText().equals("bms") && jPasswordField1.getText().equals("admin")){

setVisible(false);
new home().setVisible(true);

}
else

JOptionPane.showMessageDialog(null,"Incorrect Username or Password");
}

private void jCheckBox1ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
if(jCheckBox1.isSelected()){

jPasswordField1.setEchoChar((char)0);
}
else

jPasswordField1.setEchoChar('*');
}

home.java:

private void jButton3ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
new updateBuyer().setVisible(true);

}

private void jButton4ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
new buyersDetails().setVisible(true);

}

private void jButton8ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
new productDetails().setVisible(true);

}

Page | 19

private void jButton10ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
new billing().setVisible(true);

}

private void jButton11ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
int a = JOptionPane.showConfirmDialog(null,"Do you really want to Logout?","Select",

JOptionPane.YES_NO_OPTION);
if(a==0){

setVisible(false);
new login().setVisible(true);

}
}

private void jButton12ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
int a = JOptionPane.showConfirmDialog(null,"Do you really want to Logout?","Select",

JOptionPane.YES_NO_OPTION);
if(a==0){

System.exit(0);
}

}

private void jButton1MouseClicked(java.awt.event.MouseEvent evt) {
// TODO add your handling code here:
if(z==0){

try{
Thread.sleep(250);
jButton2.setVisible(true);
jLabel1.setVisible(true);

}
catch(InterruptedException e)
{}

}
else{

jButton2.setVisible(false);
jButton3.setVisible(false);
jButton4.setVisible(false);
jButton5.setVisible(false);
jButton6.setVisible(false);
jButton7.setVisible(false);
jButton8.setVisible(false);
jButton9.setVisible(false);
jButton10.setVisible(false);
jButton11.setVisible(false);
jButton12.setVisible(false);

Page | 20

jLabel1.setVisible(false);
jLabel2.setVisible(false);
jLabel3.setVisible(false);
jLabel4.setVisible(false);
jLabel5.setVisible(false);
jLabel6.setVisible(false);
jLabel7.setVisible(false);
jLabel8.setVisible(false);
jLabel9.setVisible(false);
jLabel10.setVisible(false);
jLabel11.setVisible(false);
z=0;
}

}

private void jButton2ComponentShown(java.awt.event.ComponentEvent evt) {
// TODO add your handling code here:
try{

Thread.sleep(250);
jButton3.setVisible(true);
jLabel2.setVisible(true);

}
catch(InterruptedException e)
{}

}

private void jButton3ComponentShown(java.awt.event.ComponentEvent evt) {
// TODO add your handling code here:
try{

Thread.sleep(250);
jButton4.setVisible(true);
jLabel3.setVisible(true);

}
catch(InterruptedException e)
{}

}

private void jButton4ComponentShown(java.awt.event.ComponentEvent evt) {
// TODO add your handling code here:
try{

Thread.sleep(250);
jButton5.setVisible(true);
jLabel4.setVisible(true);

}
catch(InterruptedException e)
{}

}

private void jButton5ComponentShown(java.awt.event.ComponentEvent evt) {

Page | 21

// TODO add your handling code here:
try{

Thread.sleep(250);
jButton6.setVisible(true);
jLabel5.setVisible(true);

}
catch(InterruptedException e)
{}

}

private void jButton6ComponentShown(java.awt.event.ComponentEvent evt) {
// TODO add your handling code here:
try{

Thread.sleep(250);
jButton7.setVisible(true);
jLabel6.setVisible(true);

}
catch(InterruptedException e)
{}

}

private void jButton7ComponentShown(java.awt.event.ComponentEvent evt) {
// TODO add your handling code here:
try{

Thread.sleep(250);
jButton8.setVisible(true);
jLabel7.setVisible(true);

}
catch(InterruptedException e)
{}

}

private void jButton8ComponentShown(java.awt.event.ComponentEvent evt) {
// TODO add your handling code here:
try{

Thread.sleep(250);
jButton9.setVisible(true);
jLabel8.setVisible(true);

}
catch(InterruptedException e)
{}

}

private void jButton9ComponentShown(java.awt.event.ComponentEvent evt) {
// TODO add your handling code here:
try{

Thread.sleep(250);
jButton10.setVisible(true);
jLabel9.setVisible(true);

Page | 22

}
catch(InterruptedException e)
{}

}

private void jButton10ComponentShown(java.awt.event.ComponentEvent evt) {
// TODO add your handling code here:
try{

Thread.sleep(250);
jButton11.setVisible(true);
jLabel10.setVisible(true);

}
catch(InterruptedException e)
{}

}

private void jButton11ComponentShown(java.awt.event.ComponentEvent evt) {
// TODO add your handling code here:
try{

Thread.sleep(250);
jButton12.setVisible(true);
jLabel11.setVisible(true);
z=1;

}
catch(InterruptedException e)
{}

}

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
/*setVisible(false);*/
new newBuyer().setVisible(true);

}

private void jButton5ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
new deleteBuyer().setVisible(true);

}

private void jButton6ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
new newProduct().setVisible(true);

}

private void jButton7ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
new updateProduct().setVisible(true);

}

Page | 23

private void jButton9ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
new deleteProduct().setVisible(true);

}

newBuyer.java:

private void jTextField1FocusGained(java.awt.event.FocusEvent evt) {
// TODO add your handling code here:
if(jTextField1.getText().equals("Enter Name")){

jTextField1.setText("");
jTextField1.setForeground(new Color(0,0,0));

}
}

private void jTextField1FocusLost(java.awt.event.FocusEvent evt) {
// TODO add your handling code here:
if(jTextField1.getText().equals("")){

jTextField1.setText("Enter Name");
jTextField1.setForeground(new Color(153,153,153));

}
}

private void jTextField2FocusGained(java.awt.event.FocusEvent evt) {
// TODO add your handling code here:
if(jTextField2.getText().equals("Enter Contact No")){

jTextField2.setText("");
jTextField2.setForeground(new Color(0,0,0));

}
}

private void jTextField2FocusLost(java.awt.event.FocusEvent evt) {
// TODO add your handling code here:
if(jTextField2.getText().equals("")){

jTextField2.setText("Enter Contact No");
jTextField2.setForeground(new Color(153,153,153));

}

}

private void jTextField3FocusGained(java.awt.event.FocusEvent evt) {
// TODO add your handling code here:
if(jTextField3.getText().equals("Enter Email")){

jTextField3.setText("");
jTextField3.setForeground(new Color(0,0,0));

}
}

private void jTextField3FocusLost(java.awt.event.FocusEvent evt) {

Page | 24

// TODO add your handling code here:
if(jTextField3.getText().equals("")){

jTextField3.setText("Enter Email");
jTextField3.setForeground(new Color(153,153,153));

}
}

private void jTextField4FocusGained(java.awt.event.FocusEvent evt) {
// TODO add your handling code here:
if(jTextField4.getText().equals("Enter Address")){

jTextField4.setText("");
jTextField4.setForeground(new Color(0,0,0));

}
}

private void jTextField4FocusLost(java.awt.event.FocusEvent evt) {
// TODO add your handling code here:
if(jTextField4.getText().equals("")){

jTextField4.setText("Enter Address");
jTextField4.setForeground(new Color(153,153,153));

}
}

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
setVisible(false);
new newBuyer().setVisible(true);

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
String name=jTextField1.getText();
String contactNo=jTextField2.getText();
String email = jTextField3.getText();
String address = jTextField4.getText();
String gender = (String)jComboBox1.getSelectedItem();

try{
//Class.forName("com.mysql.jdbc.Driver");
Connection con =

ConnectionProvider.getCon();//DriverManager.getConnection("jdbc:mysql://localhost:3306/bms","root",
"password");

Statement st = con.createStatement();
st.executeUpdate("insert into buyer

values('"+name+"','"+contactNo+"','"+email+"','"+address+"','"+gender+"')");
JOptionPane.showMessageDialog(null,"Successfully Updated");
setVisible(false);
new newBuyer().setVisible(true);

}
catch(HeadlessException | SQLException e){

JOptionPane.showMessageDialog(null, "Mobile number is already Exist");

Page | 25

}
updatebuyer.java:
private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {

// TODO add your handling code here:
String contactNo=jTextField1.getText();
try{

Connection con = ConnectionProvider.getCon();
Statement st = con.createStatement();
ResultSet rs = st.executeQuery("select * from buyer where contactNo='"+contactNo+"'");
if(rs.next()){

jTextField2.setText(rs.getString(1));
jTextField3.setText(rs.getString(2));
jTextField4.setText(rs.getString(3));
jTextField7.setText(rs.getString(4));
jTextField8.setText(rs.getString(5));
jTextField1.setEditable(false);

}
else{

JOptionPane.showMessageDialog(null, "Contact No. does not Exist");
}

}
catch(HeadlessException | SQLException e){

JOptionPane.showMessageDialog(null,e);
}

}

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
String contactNo1=jTextField1.getText();
String name = jTextField2.getText();
String contactNo = jTextField3.getText();
String email = jTextField4.getText();
String address = jTextField7.getText();
String gender = jTextField8.getText();

try{
Connection con = ConnectionProvider.getCon();
Statement st = con.createStatement();
st.executeUpdate("update buyer set

name='"+name+"',contactNo='"+contactNo+"',email='"+email+"',address='"+address+"',gender='"+gende
r+"' where contactNo='"+contactNo1+"'");

JOptionPane.showMessageDialog(null,"Successfully Updated");
setVisible(false);
new updateBuyer().setVisible(true);

}
catch(HeadlessException | SQLException e){

JOptionPane.showMessageDialog(null, e);
}

}

Page | 26

buyerDetails.java

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
try{

jTable1.print(JTable.PrintMode.NORMAL);
}
catch(Exception e){

JOptionPane.showMessageDialog(null, e);
}

}

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
setVisible(false);

}

private void formComponentShown(java.awt.event.ComponentEvent evt) {
// TODO add your handling code here:
try{

Connection con = ConnectionProvider.getCon();
Statement st = con.createStatement();
ResultSet rs=(ResultSet) st.executeQuery("select * from buyer");

jTable1.setModel(DbUtils.resultSetToTableModel((ResultSet) rs));
}
catch(SQLException e){

JOptionPane.showMessageDialog(null, e);
}

}

deleteBuyer.java

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
String contactNo=jTextField1.getText();
try{

Connection con = ConnectionProvider.getCon();
Statement st = con.createStatement();
ResultSet rs = st.executeQuery("select * from buyer where contactNo='"+contactNo+"'");
if(rs.next()){

jTextField2.setText(rs.getString(1));
jTextField3.setText(rs.getString(2));
jTextField4.setText(rs.getString(3));
jTextField5.setText(rs.getString(4));
jTextField6.setText(rs.getString(5));

Page | 27

jTextField1.setEditable(false);
}
else{

JOptionPane.showMessageDialog(null, "Contact No. does not Exist");
}

}
catch(Exception e){

JOptionPane.showMessageDialog(null,e);
}

}

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
String contactNo = jTextField1.getText();
int a= JOptionPane.showConfirmDialog(null, "Do you really want to Delete?","Select",

JOptionPane.YES_NO_OPTION);
if(a==0){

try{
Connection con = ConnectionProvider.getCon();
Statement st = con.createStatement();
st.executeUpdate("delete from buyer where contactNo='"+contactNo+"'");
setVisible(false);
new deleteBuyer().setVisible(true);

}
catch(Exception e){

JOptionPane.showMessageDialog(null,e);
}

}
}

newProduvt.java:

private void formComponentShown(java.awt.event.ComponentEvent evt) {
// TODO add your handling code here:
try{

Connection con = ConnectionProvider.getCon();
Statement st = con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);
ResultSet rs = st.executeQuery("select max(pId) from product");
if(rs.first()){

int id = rs.getInt(1);
id = id+1;
String str = String.valueOf(id);
jLabel4.setText(str);

}
else{

jLabel4.setText("1");
}

}

Page | 28

catch(Exception e){
JOptionPane.showMessageDialog(null, e);

}

}

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
setVisible(false);
new newProduct().setVisible(true);

}

private void jTextField1FocusGained(java.awt.event.FocusEvent evt) {
// TODO add your handling code here:
if(jTextField1.getText().equals("Enter Product Name")){

jTextField1.setText("");
jTextField1.setForeground(new Color(0,0,0));

}
}

private void jTextField1FocusLost(java.awt.event.FocusEvent evt) {
// TODO add your handling code here:
if(jTextField1.getText().equals("")){

jTextField1.setText("Enter Product Name");
jTextField1.setForeground(new Color(153,153,153));

}
}

private void jTextField2FocusGained(java.awt.event.FocusEvent evt) {
// TODO add your handling code here:
if(jTextField2.getText().equals("Enter Rate")){

jTextField2.setText("");
jTextField2.setForeground(new Color(0,0,0));

}
}

private void jTextField2FocusLost(java.awt.event.FocusEvent evt) {
// TODO add your handling code here:
if(jTextField2.getText().equals("")){

jTextField2.setText("Enter Rate");
jTextField2.setForeground(new Color(153,153,153));

}

}

private void jTextField3FocusGained(java.awt.event.FocusEvent evt) {
// TODO add your handling code here:
if(jTextField3.getText().equals("Enter Description")){

jTextField3.setText("");

Page | 29

jTextField3.setForeground(new Color(0,0,0));
}

}

private void jTextField3FocusLost(java.awt.event.FocusEvent evt) {
// TODO add your handling code here:
if(jTextField3.getText().equals("")){

jTextField3.setText("Enter Description");
jTextField3.setForeground(new Color(153,153,153));

}
}

private void jButton3ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
setVisible(false);

}

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
String pId = jLabel4.getText();
String pName = jTextField1.getText();
String rate = jTextField2.getText();
String description = jTextField3.getText();
String activate = (String)jComboBox1.getSelectedItem();
try{

Connection con = ConnectionProvider.getCon();
Statement st = con.createStatement();
st.executeUpdate("insert into product

values('"+pId+"','"+pName+"','"+rate+"','"+description+"','"+activate+"')");
JOptionPane.showMessageDialog(null,"Successfully Updated");
setVisible(false);
new newProduct().setVisible(true);

}
catch(Exception e){

JOptionPane.showMessageDialog(null, e);
}

}

updateProduct.java

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
String pId=jTextField1.getText();
try{

Connection con = ConnectionProvider.getCon();
Statement st = con.createStatement();
ResultSet rs = st.executeQuery("select * from product where pId='"+pId+"'");
if(rs.next()){

jTextField2.setText(rs.getString(2));

Page | 30

jTextField3.setText(rs.getString(3));
jTextField4.setText(rs.getString(4));
jTextField5.setText(rs.getString(5));
jTextField1.setEditable(false);

}
else{

JOptionPane.showMessageDialog(null, "Product ID does not Exist");
}

}
catch(Exception e){

JOptionPane.showMessageDialog(null, e);
}

}

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
String pId = jTextField1.getText();
String pName = jTextField2.getText();
String rate = jTextField3.getText();
String description = jTextField4.getText();
String activate = jTextField5.getText();
try{

Connection con = ConnectionProvider.getCon();
Statement st = con.createStatement();
st.executeUpdate("update product set

pName='"+pName+"',rate='"+rate+"',description='"+description+"',activate='"+activate+"' where
pId='"+pId+"'");

JOptionPane.showMessageDialog(null, "Successfully Updated");
setVisible(false);
new updateProduct().setVisible(true);

}
catch(Exception e){

JOptionPane.showMessageDialog(null, e);
}

}

productDetails.java:

private void formComponentShown(java.awt.event.ComponentEvent evt) {
// TODO add your handling code here:
try{

Connection con = ConnectionProvider.getCon();
Statement st = con.createStatement();
ResultSet rs = st.executeQuery("select * from product");
jTable1.setModel(DbUtils.resultSetToTableModel(rs));

}
catch(Exception e){

JOptionPane.showMessageDialog(null, e);
}

Page | 31

}

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
setVisible(false);

}

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
try{

jTable1.print(JTable.PrintMode.NORMAL);
}
catch(Exception e){

JOptionPane.showMessageDialog(null, e);
}

}
deleteProduct.java:

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
String pId = jTextField1.getText();
try{

Connection con = ConnectionProvider.getCon();
Statement st = con.createStatement();
ResultSet rs = st.executeQuery("select * from product where pId='"+pId+"'");
if(rs.next()){

jTextField2.setText(rs.getString(2));
jTextField3.setText(rs.getString(3));
jTextField4.setText(rs.getString(4));
jTextField5.setText(rs.getString(5));
jTextField1.setEditable(false);

}
else{

JOptionPane.showMessageDialog(null,"ProductId does not Exist");
}

}
catch(Exception e){

}
}

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
String pId = jTextField1.getText();
int a = JOptionPane.showConfirmDialog(null,"Do you want to

Delete?","Select",JOptionPane.YES_NO_OPTION);
if(a==0){

try{
Connection con = ConnectionProvider.getCon();

Page | 32

Statement st = con.createStatement();
st.executeUpdate("delete from product where pId='"+pId+"'");
setVisible(false);
new deleteProduct().setVisible(true);

}
catch(Exception e){

JOptionPane.showMessageDialog(null, e);
}

}
}

billing.java:

private void jTextField1ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
String name = jTextField1.getText();
try{

Connection con = ConnectionProvider.getCon();
Statement st = con.createStatement();
ResultSet rs = st.executeQuery("select * from buyer where name like '"+name+"%'");
if(rs.next()){

jTextField1.setText(rs.getString(1));
jTextField2.setText(rs.getString(2));
jTextField3.setText(rs.getString(3));
jTextField4.setText(rs.getString(4));

}
else{

jTextField2.setText("");
jTextField3.setText("");
jTextField4.setText("");

}
}
catch(Exception e){

JOptionPane.showMessageDialog(null, e);
}

}

private void jTextField5ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
String pId = jTextField5.getText();
try{

Connection con = ConnectionProvider.getCon();
Statement st = con.createStatement();
ResultSet rs = st.executeQuery("select * from product where pId = '"+pId+"'");
if(rs.next()){

jTextField6.setText(rs.getString(2));
jTextField7.setText(rs.getString(3));
jTextField8.setText("1");
jTextField9.setText(rs.getString(4));

Page | 33

}
else{

jTextField6.setText("");
jTextField7.setText("");
jTextField8.setText("");
jTextField9.setText("");

}
}
catch(Exception e){

JOptionPane.showMessageDialog(null, e);
}

}

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
int price = Integer.parseInt(jTextField7.getText());
int quantity = Integer.parseInt(jTextField8.getText());
int total = price*quantity;
DefaultTableModel model = (DefaultTableModel) jTable3.getModel();
model.addRow(new Object[]{jTextField6.getText(), jTextField9.getText(), price, quantity,total});
finalTotal=finalTotal+total;
String finalTotal1=String.valueOf(finalTotal);
jTextField10.setText(finalTotal1);

}

private void jTextField11ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
String paidAmount = jTextField11.getText();
int z = Integer.parseInt(paidAmount);
finalTotal = z-finalTotal;
String finalTotal1= String.valueOf(finalTotal);
jTextField12.setText(finalTotal1);
jTextField12.setEditable(false);

}

private void jButton3ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
setVisible(false);
new billing().setVisible(true);

}

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
String name = jTextField1.getText();
String contactNo = jTextField2.getText();
String email = jTextField3.getText();
String address = jTextField4.getText();
String path ="D:\\PROJECT\\ALL Bills";

Page | 34

com.itextpdf.text.Document doc = new com.itextpdf.text.Document();
try{

PdfWriter.getInstance(doc,new FileOutputStream(path+" "+name+" "+jLabel5.getText()+".pdf"));
doc.open();
Paragraph paragraph1 = new Paragraph(" Billing Management System\n

Contact Number:(+91)0123456789\n\n");
doc.add(paragraph1);
Paragraph paragraph2 = new Paragraph("Date & Time:"+jLabel5.getText()+"

"+jLabel6.getText()+"\nBuyer Detaiils:\nName:"+name+"\nContact
No.:"+contactNo+"\nEmail:"+email+"\nAddress:"+address+"\n\n");

doc.add(paragraph2);
PdfPTable tbl = new PdfPTable(5);
tbl.addCell("Name");
tbl.addCell("Description");
tbl.addCell("Rate");
tbl.addCell("Quantity");
tbl.addCell("Sub Total");
for(int i=0;i<jTable3.getRowCount();i++){

String n = jTable3.getValueAt(i, 0).toString();
String d = jTable3.getValueAt(i, 1).toString();
String r = jTable3.getValueAt(i, 2).toString();
String q = jTable3.getValueAt(i, 3).toString();
String s = jTable3.getValueAt(i, 4).toString();
tbl.addCell(n);
tbl.addCell(d);
tbl.addCell(r);
tbl.addCell(q);
tbl.addCell(s);

}
doc.add(tbl);
Paragraph paragraph3 = new Paragraph("\nTotal:"+jTextField10.getText()+"\nPaid

Amount:"+jTextField11.getText()+"\nReturn Amount"+jTextField12.getText()+"\n\nThank you for
visiting!! Please come agin.\n From Suswagata, Rinki, Shweta, Tanushree");

doc.add(paragraph3);
JOptionPane.showMessageDialog(null, "Bill Generated");
setVisible(true);
new billing().setVisible(true);

}
catch(Exception e){

JOptionPane.showMessageDialog(null, e);
}
doc.close();

}

2. TESTING

Page | 35

Software testing is a process, to evaluate the functionality of a software application with an intent to find
whether the developed software met the specified requirements or not and to identify the defects to
ensure that the product is defect-free in order to produce the quality product. Software testing is defined
as an activity to check whether the actual results match the expected results and to ensure that the
software system is Defect free. It involves execution of a software component or system component to
evaluate one or more properties of interest. Software testing also helps to identify errors, gaps or missing
requirements in contrast to the actual requirements. It can be either done manually or using automated
tools.

5.1 Testing Objectives

● Testing is a process of executing a program with the intent of finding an error.
● A successful test is one that uncovers an as-yet-undiscovered error.
● A good test case is one that has a high probability of finding an as yet undiscovered error.

5.2 Testing Principles

Before applying methods to design effective test cases, we must understand the basic principles that
guide software testing. Principles are as follows:

● All tests should meet the customer requirements.
● To make our software, testing should be done by a third party.
● Exhaustive testing is not possible.
● All tests to be conducted should be planned before implementing it.
● Start testing with small parts and extend it to the large parts.

5.3 Software Testing Techniques

The importance of software testing and its impact on software cannot be underestimated.
Software testing is a fundamental component of software quality assurance and represents a review of
specification, design, and coding. The greater visibility of software systems and the cost associated with
software failure are motivating factors for planning, through testing. It is not uncommon for a software
organization to spend 40% of its effort on testing.

5.3.1 White Box Testing

White box testing (also called structural testing or glass box testing) is performed to test the
program internal structure. To perform white box testing, the tester should have a thorough knowledge of
the program internals along with the purpose of developing the software. During this testing, the entire
software implementation is also included with the specification. This helps in detecting errors even with
unclear or incomplete software specification.

The goal of white box testing is to ensure that the test cases (developed by software testers by using
white box testing) exercise each path through a program. That is, test cases ensure that all internal
structures in the program are developed according to design specifications. The test cases also ensure the
following:

● All independent paths within the program have been exercised at least once.

Page | 36

● All internal data structures have been exercised.

● All loops (simple loops, concatenated loops, and nested loops) have been executed at and within

their specified boundaries.

● All segments present between the control’s structures (like 'switch' statement) have been

executed at least once. Each branch (like 'case' statement) has been exercised at least once.

● All the logical conditions as well as their combinations have been executed at least once for both

true and false paths.

There are various types of white box testing strategies. They are:

5.3.1.1 Basis Path Testing

The basic path testing is the same, but it is based on a White Box Testing method, that defines test cases
based on the flows or logical path that can be taken through the program. In software engineering, Basis
path testing involves execution of all possible blocks in a program and achieves maximum path coverage
with the least number of test cases. It is a hybrid of branch testing and path testing methods. The
objective behind the basis path in software testing is that it defines the number of independent paths, thus
the number of test cases needed can be defined explicitly.

5.3.1.2 Control Structure Testing

Control structure testing is used to increase the coverage area by testing various control structures present
in the program. The different types of testing performed under control structure. Different control
structure techniques are:

● Condition Testing
● Data Flow Testing
● Loop Testing

5.3.1.3 Unit Testing

Unit testing is a testing technique using which individual modules are tested to determine if there are any
issues by the developer himself. It is concerned with functional correctness of the standalone modules.
The main aim is to isolate each unit of the system to identify, analyse and fix the defects.

5.3.2 Black Box Testing

Black box testing checks the functional requirements and examines the input and output data of these
requirements. When black box testing is performed, only the sets of 'legal' input and corresponding
outputs should be known to the tester and not the internal logic of the program to produce that output.
Hence to determine the functionality, the outputs produced for the given sets of input are observed.

The black box testing is used to find the errors listed below.

● Interface errors such as functions, which are unable to send or receive data to/from other
software.

● Incorrect functions that lead to undesired output when executed.
● Missing functions and erroneous data structures.

Page | 37

● Erroneous databases, which lead to incorrect outputs when the software uses the data present in
these databases for processing.

● Incorrect conditions due to which the functions produce incorrect outputs when they are
executed.

● Termination errors such as certain conditions due to which a function enters a loop that forces it
to execute indefinitely.

In this testing, testers derive various test cases to exercise the functional requirements of the software
without considering implementation details of the code. Then, the software is run for the specified sets of
input and the outputs produced for each input set is compared against the specifications to conform to the
correctness. If they are specified by the user, then the software is considered to be correct, else the
software is tested for the presence of errors in it.

5.3.2.1 Functional Testing

Functional testing is a type of software testing that validates the software system against the functional
requirements/specifications. The purpose of Functional tests is to test each function of the software
application, by providing appropriate input, verifying the output against the Functional requirements.

5.3.2.2 Smoke Testing

Smoke testing is a type of software testing that determines whether the deployed build is stable or not.
The purpose of Smoke Tests it to confirm whether the QA team can proceed with further testing. Smoke
tests are a minimal set of tests run on each build.

5.3.2.3 Recovery Testing

Recovery testing verifies the system's ability to recover from points of failure like software/hardware
crashes, network failures etc. The purpose of Recovery Testing is to determine whether operations can be
continued after a disaster or after the integrity of the system has been lost. It involves reverting to a point
where the integrity of the system was known and then reprocessing transactions up to the point of failure.

5.3.2.4 Alpha Testing

Alpha testing is a type of acceptance testing; performed to identify all possible issues/bugs before
releasing the product to everyday users or the public. The focus of this testing is to simulate real users by
using a black box and white box techniques. The aim is to carry out the tasks that a typical user might
perform. Alpha testing is carried out in a lab environment and usually, the testers are internal employees
of the organization. To put it as simply as possible, this kind of testing is called alpha only because it is
done early on, near the end of the development of the software, and before beta testing.

5.3.2.5 Beta Testing

Beta Testing is one of the Acceptance Testing types, which adds value to the product as the end-user
(intended real user) validates the product for functionality, usability, reliability, and compatibility. Inputs
provided by the end-users helps in enhancing the quality of the product further and leads to its success.
This also helps in decision making to invest further in the future products or the same product for
improvisation.

Page | 38

In order to systematically test a set of functions, it is necessary to design test cases. Testers can create test
cases from the requirement specification document using the following black box testing techniques:

❒ Boundary Value Analysis

It is the widely used black-box testing, which is also the basis for equivalence testing. Boundary value
analysis tests the software with test cases with extreme values of test data. BVA is used to identify the
flaws or errors that arise due to the limits of input data.

❒ Equivalence partitioning

This test case designing technique checks the input and output by dividing the input into equivalent
classes. The data must be tested at least once to ensure maximum test coverage of data. It is the
exhaustive form of testing, which also reduces the redundancy of inputs.

❒ State Transition Testing

This testing technique uses the inputs, outputs, and the state of the system during the testing phase. It
checks the software against the sequence of transitions or events among the test data.

❒ Decision Table Testing

This approach creates test cases based on various possibilities. It considers multiple test cases in a
decision table format where each condition is checked and fulfilled, to pass the test and provide accurate
output. It is preferred in case of various input combinations and multiple possibilities.

5.4 Software Testing Strategies Used

A strategy for software testing integrates software test case design techniques into a well-planned set of
steps that cause the production of software. A software test strategy provides a road map for the software
developer, the quality assurance organization and the customer.

5.4.1 Unit Testing

Unit testing is a level of software testing where individual units or components of software are
tested. The purpose is to validate that each unit of the software performs as designed. A unit is the
smallest testable part of any software. It usually has one or a few inputs and usually a single output. In
procedural programming, a unit may be an individual program, function, procedure, etc. In
object-oriented programming, the smallest unit is a method, which may belong to a base or super class,
abstract class or derived or child class. Unit testing frameworks, drivers, stubs, and mock or fake objects
are used to assist in unit testing. Unit testing increases confidence in changing code. If good unit tests are
written and if they are run every time any code is changed. Codes are more reusable. In order to make
unit testing possible, codes need to be modular. The cost of fixing a defect detected during unit testing is
lesser in comparison to that of defects detected at higher levels. Debugging is easy. When a test fails, only
the latest changes need to be debugged. Codes are more reliable.

5.4.2 Integration Testing

Page | 39

Integration testing is defined as a type of testing where software modules are integrated logically and
tested as a group. A typical software project consists of multiple software modules, coded by different
programmers. The purpose of this level of testing is to expose defects in the interaction between these
software modules when they are integrated. Integration Testing focuses on checking data communication
amongst these modules. Hence it is also termed as 'I & T' (Integration and Testing), 'String Testing' and
sometimes 'Thread Testing'.

5.4.3 System Testing

System testing is a level of testing that validates the complete and fully integrated software product. The
purpose of a system test is to evaluate the end-to-end system specifications. Usually, the software is only
one element of a larger computer-based system. Ultimately, the software is interfaced with other
software/hardware systems. System Testing is actually a series of different tests whose sole purpose is to
exercise the full computer-based system. System Testing (ST) is a black box testing technique performed
to evaluate the complete system's compliance against specified requirements. In System testing, the
functionalities of the system are tested from an end-to-end perspective. System Testing is usually carried
out by a team that is independent of the development team in order to measure the quality of the system
unbiased. It includes both functional and Non-Functional testing.

5.4.4 Acceptance Testing

Acceptance testing is a level of software testing where a system is tested for acceptability. The purpose of
this test is to evaluate the system’s compliance with the business requirements and assess whether it is
acceptable for delivery. Formal testing with respect to user needs, requirements, and business processes
conducted to determine whether or not a system satisfies the acceptance criteria and to enable the user,
customers or other authorized entity to determine whether or not to accept the system. Internal
Acceptance Testing (Also known as Alpha Testing) is performed by members of the organization that
developed the software but who are not directly involved in the project (Development or Testing).
Usually, it is the members of Product Management, Sales and/or Customer Support. External Acceptance
Testing is performed by people who are not employees of the organization that developed the software.
Customer Acceptance Testing is performed by the customers of the organization that developed the
software. They are the ones who asked the organization to develop the software. [This is in the case of the
software not being owned by the organization that developed it.] User Acceptance Testing (Also known
as Beta Testing) is performed by the end users of the software. They can be the customers themselves or
the customers’ customers.

1. Cost Estimation of the Project

Page | 40

For every project, however noble and practical it might be, until it is within the budget of the
organization funding or developing the project, it can’t be taken up. Thus, it becomes very essential to
identify the requirements of the project correctly, choosing the right components and to calculate the cost
of the project keeping in mind all the factors.

COCOMO(Constructive Cost Model) is one of the models which is used to calculate the cost
involved in making the project. It is a regression model based on LOC, i.e. the number of Lines of
Code. It is a procedural cost estimate model for software projects and often used as a process of reliably
predicting the various parameters associated with making a project such as size, effort, cost, time and
quality.

One of the most fundamental calculations in the COCOMO is the use of the effort equation to
estimate the number of Person-Months required for developing a project. Most of the other COCOMO
results, including the estimates for Requirements and Maintenance, are derived from this quantity.

The most common approach for estimating effort is to make it a function of a single variable. Often
these variables are the project size, and the equation of effort is considered.

EFFORT(E) = a + SIZEb

Where ‘a’ and ‘b’ are constants. Values for these constants for a particular process are determined
through regression analysis, which is applied to data about the projects that have been performed in the
past.

We have used the intermediate COCOMO for determining the cost estimates of the project which
incorporates the effort estimate assessment on each step of the software engineering process. The reason
for choosing the intermediate model is the fact that our project involves hardware, software tools as well
as coding and hence a proper estimate needs to be made considering the effort that has been put into all
directions. We estimate the project size based on the number of Lines of Code(LOC), where, LOC is
defined such that:

● Only source lines that are “delivered” as part of the product are included i.e.., test drivers and
other support software are excluded.

● Source Lines are created by the project staff and any code created by application generation is
excluded.

● One LOC is defined as one logical line of code.
● LOC includes variable declarations as well.
● Comments are not counted in LOC.

The basic steps in this model are:

● Obtain an initial estimate of the development effort from the estimates of Kilo Lines of
Code(KLOC).

● Determine the set of 15 multiplying factors from the different attributes of the project.
● Multiply these estimates to get the Effort Adjustment Factor(EAF).

Intermediate COCOMO computes software development effort as a function of program size and a set of
"cost drivers" that include subjective assessment of product, hardware, personnel and project attributes.
Each of the 15 attributes receives a rating on a six-point scale that ranges from "very low" to "extra high"
(in importance or value). An effort multiplier from the table below applies to the rating. The product of
all effort multipliers results in an effort adjustment factor (EAF). Typical values for EAF range from 0.9
to 1.4.

✔ The Intermediate Cocomo formula now takes the form:
✔ E=ai(KLoC)(bi)(EAF)

Page | 41

✔ where E is the effort applied in person-months, KLoC is the estimated number of thousands
of delivered lines of code for the project, and EAF is the factor calculated above.

However, in this project, there has been little to no production cost as we used NetBeans IDE as the Gui
and java jframe and Mysql database and didn’t develop it for further use yet.

Reports:

Page | 42

Page | 43

Page | 44

Page | 45

Page | 46

Page | 47

8. Charts

8.1 PERT Chart

PERT is an acronym that stands for Program Evaluation and Review Technique. It’s a statistical tool that
can be very useful when working on a project, as it analyzes and represents the project’s tasks.

A PERT chart is a tool that can help project managers schedule, organize and coordinate tasks in their
projects. It’s a graphic representation of the timeline of a project, which gives project managers the tools
they need to break down each of the project’s tasks for analysis. There are milestones for the project
indicated on the PERT chart by triangles. Circles represent the individual tasks and are connected by lines
to show the duration of that task from start to finish. These are called nodes.

Page | 48

8.1.1 Steps to Implementing a PERT Chart

● Begin by identifying the project milestones and then break those down into individual tasks.
● Then figure out the sequence of the tasks.
● Make the PERT diagram.
● Do an estimate for each task and the time it will take to complete it.
● Calculate the critical path and identify any possible slack.
● Finally, the PERT chart is a living document that must be returned to and revived as needed

when the project is in progress.

Pert chart is useful because of the following information:

The PERT chart is used by project managers to estimate the minimum amount of time that will be needed
to close a project. This is done by examining the breakdown of the project and the connections there are
between tasks, which also helps determine the amount of risk inherent in the project.

One of the purposes of a PERT chart is to help project managers get a handle on complex projects. The
nature of the PERT chart and its breakdown structure help to take the complexity of a project and its
many parts and visualize the dependencies between each step in the process.

Fig: Pert Chart

Fig: Gantt Chart

Page | 49

9. Limitations and Conclusion

9.1 Scope and Limitations

This billing system focuses on the development of an information system that will automate

manual transactions in the supermarkets.

However, the study has focused on the following:

● The proposed automated system should generate reports of daily and monthly sales

including reservation transactions of products.

● The user by using this software can add information about new buyers, can update buyers

details, can show all details about buyers, can also delete details of a buyer if required.

● The system can add new products, can update details of products, show all details about

products, and can also delete product details.

● It will generate receipts on every transaction inputted to the system.
● The software will display a view of calculations of every transaction.
● For security and privacy of the management, the billing system complies login users with

username and password.

9.2 Conclusion

The primary significance of this project is to help the users to well organise every transaction and
minimise their workload. The automated system will help the store to compete with other firms in terms
of fast service.The system will help the users to minimize time and effort in tending to the receipt. It will
provide faultless and accurate billing calculations. This project can be improvised further by sending an
electronic bill via email to the customers and make the process eco friendly.

Page | 50

10. References

1. Paul Deitel and Harvey Deitel, "Java How to Program, Late Object", latest edition.
2. Y. Daniel Liang, "Introduction to Java Programming", latest edition.
3. Bruce Eckel, "Thinking in Java", 4th ed, 2007.
4. W3School JavaScript Tutorials, References and Examples @ http://www.w3schools.com.
5. Russell Dyer, "MySQL in a Nutshell", 2nd ed, O'reilly, 2008.
6. https://nevonprojects.com/supermarket-billing-system/
7. https://github.com/jjilka/Billing-System-Java-
8. https://projectworlds.in/java-projects-with-source-code/java-billing-system-project/
9. https://code-projects.org/supermarket-billing-system-in-java-with-source-code/
10. https://sites.google.com/site/bfcbillingsystem/methodology

Page | 51

http://www.w3schools.com/
https://nevonprojects.com/supermarket-billing-system/
https://github.com/jjilka/Billing-System-Java-
https://projectworlds.in/java-projects-with-source-code/java-billing-system-project/
https://code-projects.org/supermarket-billing-system-in-java-with-source-code/
https://sites.google.com/site/bfcbillingsystem/methodology

Page | 52

Page | 53

SILIGURI INSTITUTE OF

TECHNOLOGY

CS 892

POTHOLES AGGREGATOR

BY

CSE_PROJ_2021_17

Name of Students Roll No.

1. Ricky Saha 11900117033

2. Purabi Das 11900117036

3. Kumar Jayant 11900117053

4. Dibya Jyoti Ghosh 11900117064

Under the Guidance

of

Prof. Jayshree Singha

Submitted to the Department of Computer Science & Engineering in partial fulfillment of the

requirements for the award of the degree Bachelor of Technology in Computer Science &

Engineering.

Year of Submission: 2021

Page | 1

Siliguri Institute of Technology
P.O. SUKNA, SILIGURI, DIST. DARJEELING, PIN: 734009

Tel: (0353)2778002/04, Fax: (0353) 2778003

Page | 2

DECLARATION

This is to certify that Report entitled “POTHOLES AGGREGATOR” which is submitted by us
in partial fulfillment of the requirement for the award of degree B.Tech. in Computer
Science Engineering at Siliguri Institute of Technology under Maulana Abul Kalam
Azad University of Technology, West Bengal. We took the help of other materials in our
dissertation which have been properly acknowledged. This report has not been submitted
to any other Institute for the award of any other degree.

Date: 5th July 2021

SN Name of the Student Roll No Signature

1 Ricky Saha 11900117033

2 Purabi Das 11900117036

3 Kumar Jayant 11900117053

4 Dibya Jyoti Ghosh 11900117064

Page | 3

CERTIFICATE

This is to certify that the project report entitled POTHOLES AGGREGATOR

submitted to Department of Computer Science & Engineering of Siliguri Institute

of Technology in partial fulfilment of the requirement for the award of the degree

of Bachelor of Technology in Computer Science & Engineering during the

academic year 2019-20, is a bonafide record of the project work carried out by them

under my guidance and supervision.

 Project Group Number: 17

SN Name of the students Registration No Roll No

1. Ricky Saha 171190110063 11900117033

2. Purabi Das 171190110060 11900117036

3. Kumar Jayant 171190110043 11900117053

4. Dibya Jyoti Ghosh 171190110032 11900117064

Signature of Project Guide

Name of the Guide: Prof. Jayshree Singha

--

Signature of the HOD

 Department of Computer Science & Engineering

Page | 4

ACKNOWLEDGEMENT

Patience and preservation are the part & parcel to make fulfill any desired motto

successful. Not only these two indispensable characters but also kind operation and

restful help are always required with which one can be able to reach his ultimate goal

after passing through a series of several incidents.

Likewise, we do have the pleasure to expose that we have completed our final year

project on “POTHOLES AGGREGATOR”. So, at the very outset we deeply feel like

expressing my indebtedness and gratitude to all concerned, unless who's help, valued

suggestions, guidance and moral boosting the presence of the work of ours would not

have been possible.

We express our heartfelt gratitude in deep humility to Mrs. Jayshree. Sinha (PROJECT

MENTOR & FACULTY, CSE, SIT) who has provided us with the facilities in achieving the

objective to prepare the project work and provide valuable and priceless suggestions

which helped us at various stages of the project.

Signature of all the group members with date

1.Ricky Saha

2.Purabi Das

3.Kumar Jayant

4.Dibya Jyoti Ghosh

Page | 5

Table of Contents

ABSTRACT………………………………………………………………………………………………..……….07

1.

INTRODUCTION………………………………………………………………………………………..…………08

2. SYSTEM

ANALYSIS…………………………………………………………………………………………………….09-17

2.1 Identification of

Need……..…...................09

 2.2 Preliminary

Investigation……………………………………………………………………………………………………….....…….….09

 2.3 Feasibility

Study…….......09

 2.4 Project

Planning…….......09

 2.5 Project

Scheduling………......10

 2.6 Software requirement specifications

(SRS)...10

 2.7 Software Engineering Paradigm

applied…………………………………………………………………………………………………….……………….10-16

 2.8 Data model/Activity

Diagrams……………………………………………………………………………….……………………………………....17

3. SYSTEM

DESIGN………………………………………………………………………………………………..……...18-23

3.1 Modularization

details……….…...18

 3.2 Data integrity and

constraints…………………………………………………………………………………………………….…….……….19

 3.3 Database design/Procedural Design/Object Oriented

Design…….…………20-18

 3.4 User Interface

Design……………………………………………………………………………………………………….……………19-23

4. CODING………………………………………………………………………………………….………...24-31

5. TESTING……………………………………………………………………………………….………….32-33

Page | 6

5.1 Testing techniques and test

reports……32-33

 5.2 Debugging and Code

improvement………………………………………………………………………………………………………...33

6. SYSTEM SECURITY

MEASURES……………………………………………………………………………………………………34-35

6.1 Database/Data

Security……...34

 6.2 Creation of User profiles and access

rights……….35

7. COST ESTIMATION OF THE

PROJECT…………………………………………………………………………………………………….…….36

8. PERT

CHART……….37

9. GANTT

CHART……….37

10. CONCLUSION AND

RECOMMENDATIONS…………………………………………………………………………………………....38

REFERENCES……………………………………………………………….…………………………………….39

Page | 7

ABSTRACT

Road network has an indispensable role in economic activity. Without physical access
to resources and markets, economic growth and development would not be possible.
An effective road network system is, therefore, a fundamental element in enabling
sustainable economic development. But one of the major problems this road network
has are potholes.
Every year around 3,597 people die due to potholes. More than 30% of people
die due to potholes. The Ministry of Road Transport and Highways provided figures
that over 9300 deaths, 25000 injured in the last three years due to potholes and
more than 25,000 people are getting injured due to potholes. The report of existence
of pothole to higher authority and then higher authority call to road contractor for
repairing job takes lot of time. By that time lots of mishap occur. So, our application
solves this issue of reporting. As the citizen can simply use their smartphone to report
to the higher authority directly in real time.

Page | 8

INTRODUCTION

This project acts as an important role in saving the lives of human beings and the
overall economy of the country, which is also its main aim. We all use smartphone
these days and we the citizen are the one who has to struggle with the pot holes. So,
our application is based on Citizen first design. Citizen can now directly connect
with the higher authority. And higher authority can act promptly. First the user has
to install the application in their smartphone then simple first click a photo with
the phone. Then after that they have open the app and browse to upload the pot
hole image they captured. After that simply they have clicked the Get My Location
button to fetch their geo location and address. And then they can mention their
name and simply click on the SUBMIT button. After that the photo and the location
data will be sent to the database which can directly access by the higher authority
in real-time and work upon it. As the data will be stored in a centrally located
database so the authority can analyze and work accordingly.

Page | 9

System Analysis
● Identification of Need

Every year around 3,597 people die due to potholes. More than
30% of people die due to potholes. The Ministry of Road Transport and
Highways provided figures that over 9300 deaths, 25000 injured in the
last three years due to potholes and more than 25,000 people are

getting injured due to potholes. This app basically connects the Citizen
with the Government authority.

● Preliminary Investigation
 This android application allows us to access the potholes
location, readily, scalable and centralized so the data can be easily
access by the authority in real time whereas tracking the database is
complicated when details are maintained manually. This makes the
maintenance of schedule erroneous. Limitations of the Manual system:
It is time consuming, it leads to error prone results, it consumes a lot of
manpower to better results, it lacks data security, retrieval of data takes
a lot of time, and the percentage of accuracy is less. Whereas in the
proposed System all the above limitations can be avoided.

● Feasibility Study
 This app is based on the Crowdsourcing data model collecting
data from different data sources and presenting in a useful manner. So,
it is highly feasible to create this and even scale up in future.

● Project Planning
Front End: XML & JAVA (Android Studio)
Backend: NoSQL (Google Firebase)
Software Requirements:
• Web Browser
• Android Studio
• Windows/Linux/Mac

Hardware Components:
• Processor – Intel i5
• Memory (RAM) – 8 GB
• Secondary – 30 GB
• Android device (Testing)

Page | 10

● Project Scheduling

 This project is scheduled to be completed in a 3 months period
of time which stretched from April to June. The first month was spent
on the building of ideas, the second month was spent on the type of tools
and framework needed for the implementation. And the final month was
spent in execution of the project. This was the most crucial month as all
the planning and scheduling were made in this month.

● Software requirement specifications (SRS)
 This project was prepared to run on Android phones so the
frontend was developed on Android SDK. And the coding part was done
in Android Studio which was used as an IDE. This software was loaded
on a Windows 10 PC to work on. For database implementation we used
Google Firebase from a web browser.

● Software Engineering Paradigm applied
 Software is more than just a program code. A program is an
executable code, which serves some computational purpose. Software is
considered to be a collection of executable programming code,
associated libraries and documentations. Software, when made for a
specific requirement is called a software product.

 Engineering on the other hand, is all about developing products, using
 well-defined, scientific principles and methods.

Software paradigms refer to the methods and steps, which are taken
while designing the software. There are many methods proposed and
are in work today, but we need to see where in the software
engineering these paradigms stand. These can be combined into
various categories, though each of them is contained in one another:

Page | 11

Programming paradigm is a subset of Software design paradigm
which is further a subset of Software development paradigm.

 Software Development Paradigm:

The software development paradigm helps developer to select a
strategy to develop the software. A software development paradigm
has its own set of tools, methods and procedures, which are expressed
clearly and defines software development life cycle. Software
Development Life Cycle (SDLC) is a process used by the software
industry to design, develop and test high quality softwares. The SDLC
aims to produce high-quality software that meets or exceeds
customer expectations, reaches completion within times and cost
estimates.

The following figure is a graphical representation of the various stages
of a typical SDLC:

Page | 12

A typical Software Development Life Cycle consists of the following stages −

Stage 1: Planning and Requirement Analysis

Requirement analysis is the most important and fundamental stage in SDLC. It is
performed by the senior members of the team with inputs from the customer, the sales
department, market surveys and domain experts in the industry. This information is
then used to plan the basic project approach and to conduct product feasibility study
in the economical, operational and technical areas.

Planning for the quality assurance requirements and identification of the risks
associated with the project is also done in the planning stage. The outcome of the
technical feasibility study is to define the various technical approaches that can be
followed to implement the project successfully with minimum risks.

Stage 2: Defining Requirements

Once the requirement analysis is done the next step is to clearly define and document
the product requirements and get them approved from the customer or the market
analysts. This is done through an SRS (Software Requirement Specification) document
which consists of all the product requirements to be designed and developed during
the project life cycle.

Stage 3: Designing the Product Architecture

SRS is the reference for product architects to come out with the best architecture for
the product to be developed. Based on the requirements specified in SRS, usually more
than one design approach for the product architecture is proposed and documented
in a DDS - Design Document Specification.

This DDS is reviewed by all the important stakeholders and based on various
parameters as risk assessment, product robustness, design modularity, budget and
time constraints, the best design approach is selected for the product.

A design approach clearly defines all the architectural modules of the product along
with its communication and data flow representation with the external and third-
party modules (if any). The internal design of all the modules of the proposed
architecture should be clearly defined with the minutest of the details in DDS.

Stage 4: Building or Developing the Product

In this stage of SDLC the actual development starts and the product is built. The
programming code is generated as per DDS during this stage. If the design is
performed in a detailed and organized manner, code generation can be accomplished
without much hassle.

Developers must follow the coding guidelines defined by their organization and
programming tools like compilers, interpreters, debuggers, etc. are used to generate
the code. Different high-level programming languages such as C, C++, Pascal, Java and

Page | 13

PHP are used for coding. The programming language is chosen with respect to the type
of software being developed.

Stage 5: Testing the Product

This stage is usually a subset of all the stages as in the modern SDLC models, the testing
activities are mostly involved in all the stages of SDLC. However, this stage refers to
the testing only stage of the product where product defects are reported, tracked, fixed
and retested, until the product reaches the quality standards defined in the SRS.

Stage 6: Deployment in the Market and Maintenance

Once the product is tested and ready to be deployed it is released formally in the
appropriate market. Sometimes product deployment happens in stages as per the
business strategy of that organization. The product may first be released in a limited
segment and tested in the real business environment (UAT- User acceptance testing).

Then based on the feedback, the product may be released as it is or with suggested
enhancements in the targeting market segment. After the product is released in the
market, its maintenance is done for the existing customer base.

There are various software development life cycle models defined and designed which
are followed during the software development process. These models are also
referred to as Software Development Process Models". Each process model follows a
Series of steps unique to its type to ensure success in the process of software
development.

The software development paradigm used in this project is defined as follows:

The Waterfall Model was the first Process Model to be introduced. It is also referred
to as a linear-sequential life cycle model. It is very simple to understand and use. In a
waterfall model, each phase must be completed before the next phase can begin and
there is no overlapping in the phases.

The Waterfall model is the earliest SDLC approach that was used for software
development. The waterfall Model illustrates the software development process in a
linear sequential flow. This means that any phase in the development process begins
only if the previous phase is complete. In this waterfall model, the phases do not
overlap.

Page | 14

Waterfall Model - Design

Waterfall approach was the first SDLC Model to be used widely in Software
Engineering to ensure success of the project. In "The Waterfall" approach, the whole
process of software development is divided into separate phases. In this Waterfall
model, typically, the outcome of one phase acts as the input for the next phase
sequentially.

The sequential phases in Waterfall model are −

● Requirement Gathering and analysis − All possible requirements of the
system to be developed are captured in this phase and documented in a
requirement specification document.

● System Design − The requirement specifications from first phase are studied
in this phase and the system design is prepared. This system design helps in
specifying hardware and system requirements and helps in defining the
overall system architecture.

● Implementation − With inputs from the system design, the system is first
developed in small programs called units, which are integrated in the next
phase. Each unit is developed and tested for its functionality, which is referred
to as Unit Testing.

● Integration and Testing − All the units developed in the implementation
phase are integrated into a system after testing of each unit. Post integration
the entire system is tested for any faults and failures.

● Deployment of system − Once the functional and non-functional testing is
done; the product is deployed in the customer environment or released into
the market.

● Maintenance − There are some issues which come up in the client
environment. To fix those issues, patches are released. Also, to enhance the
product some better versions are released. Maintenance is done to deliver
these changes in the customer environment.

All these phases are cascaded to each other in which progress is seen as flowing
steadily downwards (like a waterfall) through the phases. The next phase is started
only after the defined set of goals are achieved for the previous phase and it is signed
off, so the name "Waterfall Model". In this model, phases do not overlap.

The following illustration is a representation of the different phases of the Waterfall
Model:

Page | 15

Waterfall Model - Application

Every software developed is different and requires a suitable SDLC approach to be
followed based on the internal and external factors. Some situations where the use of
Waterfall model is most appropriate are −

● Requirements are very well documented, clear and fixed.
● Product definition is stable.
● Technology is understood and is not dynamic.
● There are no ambiguous requirements.
● Ample resources with required expertise are available to support the product.
● The project is short.

Waterfall Model - Advantages

The advantages of waterfall development are that it allows for departmentalization
and control. A schedule can be set with deadlines for each stage of development and a
product can proceed through the development process model phases one by one.

Development moves from concept, through design, implementation, testing,
installation, troubleshooting, and ends up at operation and maintenance. Each phase
of development proceeds in strict order.

Page | 16

Some of the major advantages of the Waterfall Model are as follows −

● Simple and easy to understand and use
● Easy to manage due to the rigidity of the model. Each phase has specific

deliverables and a review process.
● Phases are processed and completed one at a time.
● Works well for smaller projects where requirements are very well

understood.
● Clearly defined stages.
● Well understood milestones.
● Easy to arrange tasks.
● Process and results are well documented.

Waterfall Model - Disadvantages

The disadvantage of waterfall development is that it does not allow much reflection
or revision. Once an application is in the testing stage, it is very difficult to go back and
change something that was not well-documented or thought upon in the concept
stage.

The major disadvantages of the Waterfall Model are as follows −

● No working software is produced until late during the life cycle.
● High amounts of risk and uncertainty.
● Not a good model for complex and object-oriented projects.
● Poor model for long and ongoing projects.

Despite these disadvantages, the waterfall model remains popular because it
recognizes the inherent sequence in software engineering activities.

Page | 17

● Data Model

● Activity Diagrams

 Getting the location of Data

Page | 18

System Design

● Modularization details

 Structured design partitions the program into small and independent

modules. These are organized in a top down manner with the details shown at the

bottom.

Thus, structured design uses an approach called Modularization or decomposition

to minimize the complexity and to manage the problem by subdividing it into

smaller segments.

 Top-down strategy in Modularization

In our application “Potholes Aggregator”, the entire system has been divided into

several modules. The main launching page is present in MainActivity.java, the

code relating to the data loading of the user is present in dataholder. The code

relating to the design is present in the activity_main.xml. The code relating to the

color is colors.xml and the code relating to the language is in strings.xml.

Data integrity and constraints

 Integrity constraints are a set of rules. It is used to maintain the quality
of information. Integrity constraints ensure that the data insertion, updating,
and other processes have to be performed in such a way that data integrity is
not affected. Thus, integrity constraint is used to guard against accidental
damage to the database.

The entity integrity constraint states that primary key value can't be null.

The key constraints states Keys are the entity set that is used to identify an
entity within its entity set uniquely. A primary key can contain a unique and null
value in the relational table.

Page | 19

● Database design/Procedural Design/Object Oriented Design

 The Firebase Realtime Database is a cloud-hosted database in which data
is stored as JSON. The data is synchronized in real-time to every connected client.
All of our clients share one Realtime Database instances and automatically receive
updates with the newest data.

The Firebase Realtime Database is a NoSQL database from which we can store and

sync the data between our users in real-time. It is a big JSON object which the

developers can manage in real-time. By using a single API, the Firebase database

provides the application with the current value of the data and updates to that data.

Real-time syncing makes it easy for our users to access their data from any device,

be it web or mobile.

Firebase: Realtime Database

Page | 20

● User Interface Design

Main Page :

The initial main page.

Page | 21

The user attach the pothole image and fetch the geo

location of the area and enter his/her name and upload

Page | 22

Uploading Progress :

Showing the user the upload progress.

Page | 23

Location Permission Access Alert:

If the user doesn’t switch on their GPS/navigation system

and tries to fetch location data then alert will be shown to

enable location service.

Page | 24

Coding

The code of the MainActivity page is as follows:

package com.potholes;

import android.Manifest;

import android.app.AlertDialog;

import android.app.ProgressDialog;

import android.content.Context;

import android.content.Intent;

import android.content.pm.PackageManager;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.location.Address;

import android.location.Geocoder;

import android.location.Location;

import android.location.LocationListener;

import android.location.LocationManager;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.ImageView;

import android.widget.Toast;

import androidx.annotation.NonNull;

import androidx.annotation.Nullable;

import androidx.appcompat.app.AppCompatActivity;

import androidx.core.app.ActivityCompat;

import androidx.core.content.ContextCompat;

import com.google.android.gms.tasks.OnSuccessListener;

import com.google.firebase.database.DatabaseReference;

import com.google.firebase.database.FirebaseDatabase;

import com.google.firebase.storage.FirebaseStorage;

import com.google.firebase.storage.OnProgressListener;

import com.google.firebase.storage.StorageReference;

import com.google.firebase.storage.UploadTask;

import com.karumi.dexter.Dexter;

import com.karumi.dexter.PermissionToken;

import com.karumi.dexter.listener.PermissionDeniedResponse;

import com.karumi.dexter.listener.PermissionGrantedResponse;

import com.karumi.dexter.listener.PermissionRequest;

import com.karumi.dexter.listener.single.PermissionListener;

import java.io.IOException;

import java.io.InputStream;

import java.util.ArrayList;

import java.util.List;

import java.util.Locale;

import java.util.Random;

public class MainActivity extends AppCompatActivity {

Page | 25

 // Initializing the variable

 EditText lat, lon, info,name;

 Uri filepath;

 ImageView img;

 Button browse, submit, getgps;

 Bitmap bitmap;

 String latx,lonx;

 private boolean gps_enable = false;

 private boolean network_enable = false;

 // To generate the address

 Geocoder geocoder;

 List<Address> myaddress;

 public LocationManager locationManager;

 public LocationListener locationListener = new

MylocationListner();

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 img = (ImageView) findViewById(R.id.img);

 // Function to fetch location data

 getgps = (Button) findViewById(R.id.getlocation);

 locationManager = (LocationManager)

this.getSystemService(Context.LOCATION_SERVICE);

 getgps.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 getMygps();

 }

 });

 checkLocationPermission();

 submit = (Button) findViewById(R.id.upload);

 browse = (Button) findViewById(R.id.browse);

 // Function to browse the image file

 browse.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Dexter.withActivity(MainActivity.this)

.withPermission(Manifest.permission.READ_EXTERNAL_STORAGE)

 .withListener(new PermissionListener() {

 @Override

 public void

onPermissionGranted(PermissionGrantedResponse

permissionGrantedResponse) {

 Intent intent = new

Intent(Intent.ACTION_PICK);

 intent.setType("image/*");

Page | 26

startActivityForResult(Intent.createChooser(intent, "Select Image

File"), 1);

 }

 @Override

 public void

onPermissionDenied(PermissionDeniedResponse permissionDeniedResponse)

{

 }

 @Override

 public void

onPermissionRationaleShouldBeShown(PermissionRequest

permissionRequest, PermissionToken permissionToken) {

permissionToken.continuePermissionRequest();

 }

 }).check();

 }

 });

 // Function to upload the data in firebase

 submit.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 uploadtofirebase();

 }

 });

 }

 // class created for the location manager

 class MylocationListner implements LocationListener {

 @Override

 public void onLocationChanged(@NonNull Location location) {

 if (location != null) {

 locationManager.removeUpdates(locationListener);

 latx = "" + location.getLatitude();

 lonx = "" + location.getLongitude();

 lat.setText(latx);

 lon.setText(lonx);

 geocoder = new Geocoder(MainActivity.this,

Locale.getDefault());

 try {

 myaddress =

geocoder.getFromLocation(location.getLatitude(),location.getLongitude(

),1);

 } catch (IOException e) {

 e.printStackTrace();

 }

 String address1 = myaddress.get(0).getAddressLine(0);

Page | 27

 info.setText(address1);

 }

 }

 @Override

 public void onStatusChanged(String provider, int status,

Bundle extras) {

 }

 @Override

 public void onProviderEnabled(@NonNull String provider) {

 }

 @Override

 public void onProviderDisabled(@NonNull String provider) {

 }

 }

 // Finction to check location & network permission is enable or

not.

 public void getMygps() {

 try {

 gps_enable =

locationManager.isProviderEnabled(locationManager.GPS_PROVIDER);

 } catch (Exception ex) {

 }

 try {

 network_enable =

locationManager.isProviderEnabled(locationManager.GPS_PROVIDER);

 } catch (Exception ex) {

 }

 if (!gps_enable && !network_enable) {

 AlertDialog.Builder builder = new

AlertDialog.Builder(MainActivity.this);

 builder.setTitle("Attention");

 builder.setMessage("Location is Disable, enable location

service");

 builder.create().show();

 }

 if (gps_enable) {

 if (ActivityCompat.checkSelfPermission(this,

Manifest.permission.ACCESS_FINE_LOCATION) !=

PackageManager.PERMISSION_GRANTED &&

ActivityCompat.checkSelfPermission(this,

Manifest.permission.ACCESS_COARSE_LOCATION) !=

PackageManager.PERMISSION_GRANTED) {

 // TODO: Consider calling

 // ActivityCompat#requestPermissions

 // here to request the missing permissions, and then

overriding

 // public void onRequestPermissionsResult(int

requestCode, String[] permissions,

Page | 28

 // int[]

grantResults)

 // to handle the case where the user grants the

permission. See the documentation

 // for ActivityCompat#requestPermissions for more

details.

 return;

 }

 if (ActivityCompat.checkSelfPermission(this,

Manifest.permission.ACCESS_FINE_LOCATION) !=

PackageManager.PERMISSION_GRANTED &&

ActivityCompat.checkSelfPermission(this,

Manifest.permission.ACCESS_COARSE_LOCATION) !=

PackageManager.PERMISSION_GRANTED) {

 // TODO: Consider calling

 // ActivityCompat#requestPermissions

 // here to request the missing permissions, and then

overriding

 // public void onRequestPermissionsResult(int

requestCode, String[] permissions,

 // int[]

grantResults)

 // to handle the case where the user grants the

permission. See the documentation

 // for ActivityCompat#requestPermissions for more

details.

 return;

 }

locationManager.requestLocationUpdates(LocationManager.NETWORK_PROVIDE

R, 0, 0, locationListener);

 }

 if(network_enable){

locationManager.requestLocationUpdates(LocationManager.NETWORK_PROVIDE

R, 0, 0, locationListener);

 }

 }

 private boolean checkLocationPermission(){

 int location =

ContextCompat.checkSelfPermission(this,Manifest.permission.ACCESS_FINE

_LOCATION);

 int location2 =

ContextCompat.checkSelfPermission(this,Manifest.permission.ACCESS_COAR

SE_LOCATION);

 List<String>listPermission= new ArrayList<>();

 if(location != PackageManager.PERMISSION_GRANTED){

listPermission.add(Manifest.permission.ACCESS_FINE_LOCATION);

 }

 if(location2 != PackageManager.PERMISSION_GRANTED){

listPermission.add(Manifest.permission.ACCESS_COARSE_LOCATION);

 }

 if(!listPermission.isEmpty()){

ActivityCompat.requestPermissions(this,listPermission.toArray(new

Page | 29

String[listPermission.size()]),1);

 }

 return true;

 }

 @Override

 protected void onActivityResult(int requestCode, int resultCode,

@Nullable Intent data) {

 if(requestCode==1 && resultCode==RESULT_OK)

 {

 filepath=data.getData();

 try {

 InputStream

inputStream=getContentResolver().openInputStream(filepath);

 bitmap= BitmapFactory.decodeStream(inputStream);

 img.setImageBitmap(bitmap);

 }catch (Exception ex)

 {

 }

 super.onActivityResult(requestCode, resultCode, data);

 }

}

 // Function to connect and upload the data in firebase

 private void uploadtofirebase() {

 final ProgressDialog dialog=new ProgressDialog(this);

 dialog.setTitle("File Uploader");

 dialog.show();

 lat=(EditText)findViewById(R.id.t4);

 lon=(EditText)findViewById(R.id.t1);

 info=(EditText)findViewById(R.id.t2);

 name=(EditText)findViewById(R.id.t3);

 FirebaseStorage storage=FirebaseStorage.getInstance();

 final StorageReference

uploader=storage.getReference("Image1"+new Random().nextInt(50));

 uploader.putFile(filepath)

 .addOnSuccessListener(new

OnSuccessListener<UploadTask.TaskSnapshot>() {

 @Override

 public void onSuccess(UploadTask.TaskSnapshot

taskSnapshot) {

uploader.getDownloadUrl().addOnSuccessListener(new

OnSuccessListener<Uri>() {

 @Override

 public void onSuccess(Uri uri) {

 dialog.dismiss();

 FirebaseDatabase

db=FirebaseDatabase.getInstance();

 DatabaseReference

root=db.getReference("users");

 dataholder obj=new

Page | 30

dataholder(info.getText().toString(),lat.getText().toString(),lon.getT

ext().toString(),uri.toString());

root.child(name.getText().toString()).setValue(obj);

 // TO reset the Edittext after

completion of the last upload

 info.setText("0");

 lat.setText("0");

 lon.setText("0");

 name.setText("0");

img.setImageResource(R.drawable.upload);

Toast.makeText(getApplicationContext(),"Uploaded",Toast.LENGTH_LONG).s

how();

 }

 });

 }

 })

 // Function to progess status of the uploading of data

in firebase

 .addOnProgressListener(new

OnProgressListener<UploadTask.TaskSnapshot>() {

 @Override

 public void onProgress(UploadTask.TaskSnapshot

taskSnapshot) {

 float

percent=(100*taskSnapshot.getBytesTransferred())/taskSnapshot.getTotal

ByteCount();

 dialog.setMessage("Uploaded :"+(int)percent+"

%");

 }

 });

 }

}

Page | 31

The code of the data loading page is as follows:

package com.potholes;

public class dataholder {

 String info,lat,lon,pimage;

 // Constructor is created

 public dataholder(String info, String lat, String lon, String

pimage) {

 this.info = info;

 this.lat = lat;

 this.lon = lon;

 this.pimage = pimage;

 }

 // Getter & Setter method is created

 public String getInfo() {

 return info;

 }

 public void setInfo(String info) {

 this.info = info;

 }

 public String getLat() {

 return lat;

 }

 public void setLat(String lat) {

 this.lat = lat;

 }

 public String getLon() {

 return lon;

 }

 public void setLon(String lon) {

 this.lon = lon;

 }

 public String getPimage() {

 return pimage;

 }

 public void setPimage(String pimage) {

 this.pimage = pimage;

 }

}

Page | 32

Testing
3 Android phones of different manufactures were used for testing different test
cases.

● Poco F1 (Running Android 10 & 11)
● Redmi Note 10 (Running Android 10)
● Pixel 2 (AVD) (Running Android 8)

Test Cases Android
Version

Remarks

1. UI (Homepage) 10 Ran smoothly without any hic-ups

9 Ran smoothly without any hic-ups

8 Ran smoothly without any hic-ups

2. Entering the
values

10 No crashing or force stop while typing the data

9 No crashing or force stop while typing the data

8 No crashing or force stop while typing the data

3. Browsing the
image file

10 No file size issue while uploading the image

9 No file size issue while uploading the image

8 No file size issue while uploading the image

4. Getting the
location data

10 No issue while fetching the data from location service

9 No issue while fetching the data from location service

8 No issue while fetching the data from location service

5. UI (Night Mode) 10 Only issue was editext color was not visible properly

9 Only issue was editext color was not visible properly

8 N/A (OS doesn’t support)

Page | 33

6. Location
Permission
Checking

10 No-issues

9 No-issues

8 No-issues

Debugging and Code improvement
 The codes were debugged heavily with rigorous testing of every feature on
different platforms. The debug method was mostly trial and error, emphasizing on the
quality of the app and restricting every possible loophole that came to our notice.

At first much of the coding was hard-coded to get the app up and running with all the
basic features. Gradually all the hard-coding were removed to make the app more
flexible and scalable in future.

Page | 34

System Security measures (Implementation of security for the
project developed)
● Database/data security

Security in Firebase is handled by setting the JSON like object inside the security rules.
Security rules can be found when we click on Database inside the side menu and then
RULES in the tab bar.

In this section, we will go through a couple of simple examples to show you how to secure
the Firebase data.

Read and Write

The following code snippet defined inside the Firebase security rules will allow
writing access to /users/'$uid'/ for the authenticated user with the same uid, but
everyone could read it.

Example

Let us consider the following example.

{

 "rules": {

 "users": {

 "$uid": {

 ".write": "$uid === auth.uid",

 ".read": true

 }

 }

 }

}

Validate

We can enforce data to string by using the following example.

Example

{

 "rules": {

 "foo": {

 ".validate": "newData.isString()"

 }

 }

}

Page | 35

● Creation of User profiles and access rights
In Google Firebase, authenticating your users and writing security rules, you can fully
restrict read / write access to your Firebase data.
In a nutshell, Firebase security is enforced by server-side rules, that you author, and
govern read or write access to given paths in your Firebase data tree.
Firebase security rules are JavaScript-like expressions: easy-to-write expressions that
have access to the credentials for the connection, and the view of the Firebase data tree
as it exists, along with pending changes on write.

In most cases, your client-side logic, templates, assets, etc. will be static and public.
What you're really looking to secure is user and application data, and this is where
Firebase Authentication (whether using custom Firebase authentication tokens or
Firebase Simple Login) comes in. Firebase Authentication is essentially token
generation - taking confirmed, identifiable user data and passing it securely to Firebase
so that it cannot be spoofed. This confirmed credential data is then made available in
your security rules.

Page | 36

Cost Estimation of the Project

Item Price

1. Google Firebase Subscription 140 per month

2. Hardware Resource 50000

3. Electricity + Internet Charges 200 (approx.)

TOTAL 50340

Page | 37

PERT Chart

Gantt Chart

Page | 38

Conclusion and Recommendations

In conclusion this application is aimed to connect the Citizen with the higher
authority can now directly and transparently. Listing out some advantages,
disadvantages and applications of the project: -

Advantages

● Citizen can directly connect with the authority seamless with a click of a
button.

● The Road authority can transparently see the road condition from a central
location.

● It is very cost effective and increase the overall economy by rapidly working
on the road condition.

● Usage of this application will greatly reduce time in survey and corruption
by the road contractor if an done so.

Disadvantages

● The android mobile user will not be able to insert or view details if the server

goes down. Thus, there is a disadvantage of single point failure.

Applications

● This application can be used by any common person and in regional

language too.

● The application can prove very beneficial to the Citizen, Government

Authority and the road contractor.

Recommendations - This app can be made better in future by showing the other
user's reported location so one can avoid that road.

Page | 39

Reference

1. Google.Inc, Official Firebase Documentation 2021

https://firebase.google.com/docs

2. Google.Inc, Official Android Documentation 2021

 https://developer.android.com/docs

 3. Oracle.Inc, Official Java Documentation 2021

 https://docs.oracle.com/en/java/

4. Aditya, Symbiosis Law School., “Pothole deaths in India” Article
January 5, 2021
https://blog.ipleaders.in/pothole-deaths-india/

5. YouTube - Knowledge Extension - get current location android studio

- Apr 24, 2020
 https://youtu.be/ByjxO66Y_1I

6. YouTube - Md Jamal - Firebase User Signup with Image - Jul 1, 2020
 https://youtu.be/9bZRMn6mZWc

7. N. Naveen, 2 S.Mallesh Yadav, 3A.Sontosh Kumar 1Assistant Professor, K G

Reddy College of Engineering and Technology, Hyderabad 2,3 “A Study on

Potholes and Its Effects on Vehicular Traffic”. 2018 IJCRT | Volume 6, Issue 1

February 2018 | ISSN: 2320-2882

8. EUGENE Y. HUANG, Associate Professor of Civil Engineering, University of

Illinois. A Study of Occurrence of Potholes and Washboards on Soil-

Aggregate Roads, page 153, 2005.

9. Abhishek Kanoungo, Chitkara University – “Study of Causes of Potholes

on Bituminous Roads – A Case study”. Journal of Civil Engineering and

Environment Technology (JCEET) ISSN-2349-879X , Number 4 (April-June

2015), pp. 345-349At: JNU, NEW DELHI Volume: Volume 2.

https://firebase.google.com/docs
https://developer.android.com/docs
https://docs.oracle.com/en/java/
https://blog.ipleaders.in/pothole-deaths-india/

